10. Define ANOVA and state the assumptions made in it.

Section B

Note : Attempt all the questions.
11. (a) Find $\sqrt{32}$ by Newton-Raphson method.
(b) Define order of convergence and obtain it for Regula-Falsi method.
Or

Find a pair of complex roots of $x^{4}-5 x^{3}+20 x^{2}-40 x+60=0$ by Baerestow method taking initial approximation as $(-4,8)$.
12. Using Milne's predictor corrector method, solve :

$$
\frac{d y}{d x}=x-y^{2} \quad y(0)=0
$$

for $y(0.8)$. Compute the required value by method of your choice.
\qquad

Subject Code- 0417

M.C.A. (Third Year) EXAMINATION

(Batch 2009 Onwards)
(5 Years Integrated Course)
MATHEMATICS-III
MCA-305
(Computer Oriented Numerical and Statistical Methods Using C)

Time : 3 Hours
Maximum Marks : 70

Section A

Note : Attempt any Seven questions. $\mathbf{7 \times 5}=\mathbf{3 5}$

1. Find the no. of terms in $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots$. s.t. their sum gives the value correct upto 5 decimal places for all $x .0<x<1$.
(2-76-10-0119) J-0417
P.T.O.
2. Find the root $x^{4}-x-10=0$ using NewtonRaphson method. Correct upto three decimal places.
3. Solve the initial value problem for $y(0.1)$:

$$
\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1
$$

by Taylor's series.
4. Estimate $f(42)$ for the data :

x	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

5. Find $y^{\prime}(5)$ for the data :

x	0	1	2	3	4	5	6
y	0	2.5	8.5	15.5	24.5	36.5	50

6. Evaluate :

$$
\int_{0}^{1} \frac{d x}{1+x}
$$

using 7 ordinates by Simpson's $\frac{3}{8}$ rule.

$$
O r
$$

(a) Evaluate :

$$
\int_{-1}^{1}\left(5 x^{3}-3 x^{2}+2 x+1\right) d x
$$

by Gauss quadrature three point formula-
(b) Fit a second degree polynomial to the data :

12

x	$:$	0	1	2	3	4
$f(x)$	$:$	-4	-1	4	11	20

13. Explain the various methods used for determining the trend, giving their merits and demerits.
Or

Make an analysis of variance to assess the variation in performance of students of 4 Convent schools taken at random :

Schools

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
8	12	18	13
10	11	12	9
12	9	16	12
8	14	6	16
7	4	8	15
		$\mathbf{5}$	

Or
(a) Evaluate :

$$
\int_{-1}^{1}\left(5 x^{3}-3 x^{2}+2 x+1\right) d x
$$

by Gauss quadrature three point formula-
(b) Fit a second degree polynomial to the data :

x	$:$	0	1	2	3	4
$f(x)$	$:$	-4	-1	4	11	20

13. Explain the various methods used for determining the trend, giving their merits and demerits.

Or
Make an analysis of variance to assess the variation in performance of students of 4 Convent schools taken at random :

Schools

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
8	12	18	13
10	11	12	9
12	9	16	12
8	14	6	16
7	4	8	15
		$\mathbf{5}$	

