Describe travelling salesman problem. Give its solution using dynamic programming design technique.

12
13. Explain graph coloring problem with the help of suitable example. Discuss the significance of 4-colour conjecture.

Or
(a) Wrie recursive backtracking algorithm for the sum of subsets problem.
(b) Discuss branch and bound problem solving technique. $\quad \mathbf{7 + 4}$
3. Define and discuss various asymptotic notations.
4. Define data structure and its various types.
5. How is graph represented in memory ?
6. What is a Minimum Spanning Tree ? Explain Kruskal's algorithm to obtain a spanning tree.
7. State and explain the principle of optimality.
8. Consider the recurrence
$\mathrm{T}(n)=3 \mathrm{~T}(n / 2)+n, \mathrm{~N} \geq 1$, with initial $\mathrm{T}(0)=0$
Obtain the solution for above recurrence.
9. Discuss and explain 8 -queens problem and write backtracking algorithm for solving 8-queens problem.
10. Write short note on NP-hard and NP-complete problems.

Section B

Note : Attempt all the questions.
11. Explain divide and conquer algorithm design technique. Write an algorithm for Merge Soft and determine its complexity. Give examples wherever necessary.

Or

With a suitable algorithm, explain the problem of finding the maximum and minimum items in a set of ' n ' elements.
12. (a) What do you understand by Single Source Shortest Path ? Explain the greedy way to generate shortest path.
(b) Suppose your have 6 containers whose weights are $50,10,30,20,60,5$ and a ship whose capacity is 100 . Using greedy approach find an optimal solution to this instance of container loading problem.

