Or

- (a) Let E be a normal extension of F and let K be a subfield of E containing F. Show that E is a normal extension over K. Given an example to show that K need not be a normal extension of F. 8
- (b) Prove that finite extension of a finite field is separable. 4
- 13. (a) Let F be a field of characteristic $\neq 2$. Let $x^2 a \in F[x]$ be an irreducible polynomial over F. Then its Galois group is of order 2.
 - (b) If a > 0 is contructible, then show that \sqrt{a} is constructible.

Or

- (a) If f(x)∈ F[x] has r distinct roots in its plitting field E over F, then the Galois group G(E/F) of f(x) is a subgroup of the symmetric group S_r.
- (b) Let E be the splitting field of $x^n a \in F[x]$ then G(E/F) is a solvable group.

Roll No. Exam Code : J-19

Subject Code—0351

M. Sc. EXAMINATION

(Batch 2011 Onwards)

(First Semester)

MATHEMATICS

MAL-511

Algebra

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

- 1. If G is a cyclic group such that order $(G) = p_1p_2.....p_r$, p_i distinct primes, show that the number of distinct composition series of G is r!.
- 2. Show that a simple group is solvable if and only if it is cyclic.

P.T.O.

- 3. Show that S_6 is not nilpotent.
- 4. Let $w = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$, and $u = \cos \frac{2\pi}{n}$, then show that $\left[\theta(w): \theta(u)\right] = 2$.
- 5. Let k and k' be algebraic closures of a field F, then $k \simeq k'$ under an Isomorphism that is an identity of F.
- **6.** Find the smallest normal extension (upto isomorphism) of $\theta(2^{1/4}, 3^{1/4})$ in $\overline{\theta}$.
- 7. The prime field of a field F is either isomorphic to θ or to $\frac{z}{\langle p \rangle}$, p is prime.
- **8.** The group $G(\theta(\alpha)/\theta)$, where $\alpha^5 = 1$ and $\alpha \neq 1$, is isomorphic to the cyclic group of order 4.
- 9. Show that the polynomial $x^7 10x^5 + 15x + 5$ is not solvable by radicals over θ .

2

10. Prove that the regular 17-gon is constructible with ruler and compass.

Section B

Note: Attempt all the questions.

- 11. (a) State and prove Jordon-Holder theorem.
 - (b) Write down all the composition series for the quarternion group. 4

Or

- (a) State and prove Zassenhau's lemma. 8
- (b) A group G is nilpotent if and only if G has a normal series.4
- 12. (a) If E is an extension of F and $\mu \in E$ is algebraic over F, then F(u) is an algebraic extension of F.
 - (b) Show that a finite field F of p^n elements has exactly one subfield with p^m elements for each divisor m of n.

J-0351