10. If $f(z)$ be an analytic function in the domain

D , and lat z_{0} be a point in D. If $f^{\prime}\left(z_{0}\right) \neq 0$, then $f(z)$ is conformal at z_{0}.

Section B

Note : Attempt all the questions.
11. (a) State and prove Cauchy-Goursat theorem.
(b) State and prove Taylor's theorem. Also, find Taylor series for the function $f(z)=\frac{1+2 z^{3}}{z+z^{2}}$, valid in a neighbourhood of the point $z=i$.

Or

(a) State and prove Rouche's theorem.
(b) State and prove Poisson's formula.
12. (a) Under the transformation $w=\log z$ find the image region of the annulus $a \leq|z| \leq b$.

Subject Code- 0355

M. Sc. EXAMINATION

(Batch 2011 Onwards)
(First Semester)
MATHEMATICS
MAL-515
Complex Analysis-I

Time : 3 Hours
Maximum Marks : 70

Section A

Note : Attempt any Seven questions. $7 \times 5=\mathbf{3 5}$

1. (a) If $f(z)$ is differentiable in a connected open set D and $|f(z)|$ is constant in D , then show that $f(z)$ is a constant in D.
(b) If $f(z)$ is analytic on a simply connected region A then, for any two curves γ_{1} and γ_{2} joining two points z_{0} and z_{1} then prove that $\int_{y_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.
2. Prove that $z=a$ be a zero of order k of an analytic function $f(z)$ iff $f(z)=(z-a)^{k} \phi(z)$ where $\phi(a) \neq 0, \phi(a) \neq \infty$.
3. (a) If $f(z)$ is continuous in a domain D and iff for every closed contour C in the domain $\mathrm{D} \int_{\mathrm{C}} f(z) d z=0$ then prove that $f(z)$ is analytic within D .
(b) Find $\int_{\mathrm{C}} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
4. A function which is regular in all finite region of the complex plane, and is bounded, is identically equal to a constant.

Or

(a) State and prove Laurent theorem. Also find Laurent series expansion, in power of $(z+1)$, of the function $f(z)=\frac{z^{2}+1}{z\left(z^{2}-3 z+2\right)}$ in the region $|z+1|>3$.
(b) If $f(z)$ has an isolated signularity at z_{0}, then $f(z)$ has a pole at z_{0} if and only if $\lim _{z \rightarrow z_{0}} f(z)=\infty$.
(b) State and prove Argument principle theorem.
Or
(a) State and prove Mittag Leffler's expansion theorem.
(b) Use method of contour integration prove that :

$$
\int_{0}^{2 \pi} \frac{1}{1+a^{2}-2 a \cos \theta} d \theta=\frac{2 \pi}{1-a^{2}}, 0<a<1
$$

13. (a) State and prove sufficient condition for $w=f(z)=u+i v$ to be conformal mapping.
(b) If $f(z)$ is analytic at z_{0} with $f\left(z_{0}\right) \neq 0$ and $g(z)$ has a simple zero at z_{0} then show that $\operatorname{Res}\left[\frac{f(z)}{g(z)} ; z_{0}\right]=\frac{f\left(z_{0}\right)}{g\left(z_{0}\right)}$.
