- (b) State Dirichlet's test for uniform convergence of series. Using this, show that the series $\sum (-1)^n \frac{x^2 + n}{n^2}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of x.
- 12. State and prove inverse function theorem by giving full details.12

Or

Prove that the necessary and sufficient condition for a bounded function f to be integrable on [a, b] (i.e. $f \in R_{\alpha}$) is that to each $\epsilon > 0$, \exists a partition P of [a, b] such that U(P, f, α) – L(P, f, α) < ϵ . Also prove that if U(P, f, α) – L(P, f, α) < ϵ is true for P = $\{a = x_0, x_1, x_2, \dots, x_{i-1}, x_i, \dots, x_n = b\}$ and if s_i , t_i are arbitrary points in $[x_{i-1}, x_i]$

then
$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| .\Delta \alpha_i < \epsilon$$
.

Roll No. Exam Code : J-19

Subject Code—0352

M. Sc. EXAMINATION

(Batch 2011 Onwards)

(First Semester)

MATHEMATICS

MAL-512

Real Analysis

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

- 1. State and prove Cauchy's criterion for uniform convergence of a sequence of functions.
- 2. Test the uniform convergence of the series

$$\sum \frac{x}{n(1+nx^2)} \ \forall \ x \in \mathbf{R}, \quad \text{using} \quad \text{Weierstrass}$$

M-test.

(2-71-8-0119) J-0352

P.T.O.

- **3.** If $\{f_n\}$ is a sequence of continuous functions on E and if f_n converges to f uniformly on E, then prove that f is continuous on E. Is the converse true? Justify your answer.
- 4. Prove that a linear operator on a finite dimensional vector space X is one-one iff R(T)= X i.e. T is onto.
- **5.** State and prove Young's theorem for the interchange of the order of differentiation.
- 6. Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions $\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$ and z = x + y.
- 7. If f is continuous, then prove that $f \in \mathbf{R}_a$ on [a, b].
- 8. If f is continuous and α is monotically increasing on [a, b], then show that :

$$\int_{a}^{b} f \, d\alpha + \int_{a}^{b} f \, df = f(b)\alpha(b) - f(a)\alpha(a)$$

9. If E_1 and E_2 are measurable sets such that $E_1 \supset E_2$ and $m(E_2) < \infty$, then $m(E_1 - E_2) =$

 $m(E_1)-m(E_2)$.

10. Let E be a given set. Then prove that if E is measurable, then given $\in > 0$, \exists open set

 $0 \supset E$ such that $m*(0-E) < \epsilon$.

Section B

Note: Attempt all the questions.

11. State and prove Abel's theorems in both forms(first form and second form).12

Or

(a) State and prove Weirstrass M-test for the uniform convergence of a series of functions. Also show that the series $(1-x)^2 + (1-x)^2 x + (1-x)^2 x^2 + \dots$ is uniformly convergent on [0, 1].

3

(2-71-9-0119) **J-0352**

P.T.O.

13. Define Borel σ-algebra and Borel sets. Give an example of each. Also prove that every Borel set in R is measurable.11

Or

Prove that there exists a non-measurable set in the interval [0, 1]. Also show that Cantor's Ternary set has measure zero. 13. Define Borel σ-algebra and Borel sets. Give an example of each. Also prove that every Borel set in R is measurable.
11

Or

Prove that there exists a non-measurable set in the interval [0, 1]. Also show that Cantor's Ternary set has measure zero.

J-0352 5 450 (2-71-10-0119) J-0352 5 450