12. Define dual space. Prove that $\left(l_p^n\right)^* = l_q^n$ and $\left(l_1^n\right)^* = l_\infty^n$ where :

$$l_p^n = \left\{ x = (x_1, x_2, \dots, x_n) : ||x|| = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \right\}$$

$$l_1^n = \left\{ x = (x_1, x_2, \dots, x_n) : ||x|| = \sum_{i=1}^n |x_i| \right\}$$

$$l_{\infty}^{n} = \left\{ x = (x_{1}, x_{2}, \dots, x_{n}) : ||x|| = \max_{1 \le i \le n} |x_{i}| \right\}$$

Or

If P is a projection on a Banach space B and if M and N are its range and null space, then prove that M and N are closed linear subspace of B such that $B = M \oplus N$. Also state and prove its converse part.

4

Roll No. Exam Code: J-19

Subject Code—0366-X

M. Sc. EXAMINATION

(Fourth Semester)

(Prior to 2011 Re-appear)

MATHEMATICS

MAL-641

Functional Analysis

Time: 3 Hours Maximum Marks: 100

Section A

Note: Attempt any *Seven* questions. $7 \times 7 = 49$

- 1. Prove that a normed linear space X is complete iff every absolutely summable series in X is convergent (summable).
- 2. State and prove Minkowski's inequality for L^p space.

P.T.O.

- 3. Let M be a closed linear subspace of a normed linear space N and let x_0 be a vector not in M, then there exists a functional F in N* such that $F(M) = \{0\}$ and $F(x_0) \neq 0$
- **4.** Let X and Y be normed spaces over the field \mathbf{K} and $T: X \xrightarrow{\text{onto}} Y$ be a linear operator. Then, T^{-1} exists and is a bounded linear operator iff \exists a constant K > 0 such that $\|Tx\|_{\mathcal{Y}} \ge K \|x\|_{X}$, $\forall x \in X$.
- **5.** Prove that a linear transformation is closed iff its graph is a closed subspace.
- 6. Let X and Y be normed spaces and T : X → Y be linear operator. Then prove that T is compact iff it maps every bounded sequence <x_n> in X onto a sequence <Tx_n> in y which has a convergence.
- 7. State and prove Schwarz's inequality in an Inner product space.

- 8. Show that the linear space C[a, b] equipped with the norm given by $||x||_{\infty} = \sup_{t \in [a, b]} |x(t)|, x \in C[a, b]$, is not an inner product space and hence not a Hilbert space.
- 9. A subspace M of a Hilbert space H is closed in H iff $M = M^{\perp \perp}$.
- 10. If N_1 and N_2 are normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other, then prove that $N_1 + N_2$ and N_1N_2 are normal.

Section B

Note: Attempt all the questions. $3\times17=17$

11. State and prove Riesz-Fisher theorem for the completeness of L^p space.

Or

State and prove Riesz-representation theorem for bounded linear functional on C[a, b].

- 13. Let H be a Hilbert space and let $\langle e_i \rangle$ be an orthonormal set in H. Then the following conditions are all equivalent to each other:
 - (i) $\langle e_i \rangle$ is complete
 - (ii) $x \perp \langle e_i \rangle \Rightarrow x = 0$
 - (iii) If x is any arbitrary vector in H, then $x = \sum (x, e_i)e_i$.
 - (iv) If x is any arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2$.

Or

Let H be a Hilbert space and let f be an arbitrary functional in H*. Then there exists a unique vector y in H such that f(x) = (x, y) for every x in H.

- 13. Let H be a Hilbert space and let $\langle e_i \rangle$ be an orthonormal set in H. Then the following conditions are all equivalent to each other:
 - (i) $\langle e_i \rangle$ is complete
 - (ii) $x \perp \langle e_i \rangle \Rightarrow x = 0$
 - (iii) If x is any arbitrary vector in H, then $x = \sum (x, e_i)e_i$.
 - (iv) If x is any arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2.$

Or

Let H be a Hilbert space and let f be an arbitrary functional in H*. Then there exists a unique vector y in H such that f(x) = (x, y) for every x in H.